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Abstract 

 

 

We introduce an asymmetric Spline-Threshold-GARCH model that generalizes the 

Spline-GARCH and asymmetric TARCH models. Monte Carlo experiments of this model and 

applications for SPX and DJI equity indices show that our model has better fit and has higher 

persistence for the GARCH parameters when the returns are negative. We suggest to use our 

model for forecasting volatility and tail risk measures as it is more general and robust than 

Spline-GARCH or Spline-TARCH models. 
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1. Introduction 

 

The generalized autoregressive conditional heteroscedasticity (GARCH) model is one of the most 

popular volatility models used by financial practitioners and academics. Since its introduction 

there have been many extensions of GARCH models that resulted in better statistical fit and 

forecasts. For example, TARCH or GJR-GARCH (Glosten, Jagannathan, & Runkle (1993)) is 

one of the well-known extensions of GARCH models with an asymmetric term which captures 

the effect of negative shocks in equity prices on volatility commonly referred to as a “leverage” 

effect. EGARCH introduced by Nelson (1991) is an alternative asymmetric model of the 

logarithmic transformation of conditional variance that does not require positivity constraints on 

parameters. Different volatility regimes can be captured by Markov Regime Switching ARCH 

and GARCH models allowing for stochastic time variation in parameters. These models were 

introduced by Cai (1994) and Hamilton and Susmel (1994) correspondingly.  

 

Since tail risk measures use forecasts of volatility model specification is essential for risk 

management. Engle and Mezrich (1995) introduced a way to estimate value at risk (VaR) using a 

GARCH model, while Hull and White (1998) proved that a GARCH model has a better 

performance than a stochastic volatility model in calculation of VaR. The TARCH or 

GJR-GARCH model was used by Brownlees and Engle (2012) among others for forecasting 

volatility and measurement of tail and systemic risks. 

 

The typical feature of the GARCH family models is that the long run volatility forecast converges 

to a constant level. One exception is the Spline-GARCH model of Engle and Rangel (2008) that 

allows the unconditional variance to change with time as an exponential spline and the high 

frequency component to be represented by a unit GARCH process. This model may incorporate 

macroeconomic and financial variables into the slow moving component and as shown in Engle 

and Rangel (2008) improves long run forecasts of international equity indices. A special feature 

of this model is that the unconditional volatility coincides with the low-frequency volatility. 

However, this model lacks a well-documented asymmetry in volatility. 

 

There were very few other applications of Spline-GARCH models in the literature. The 

Factor-Spline-GARCH model developed in Rangel and Engle (2012) is used to estimate high and 

low frequency components of equity correlations. Their model is a combination of the 

asymmetric Spline GJR-GARCH (or TARCH) and the DCC (dynamic conditional correlations) 

models. Another application of an asymmetric Spline GJR-GARCH model for commodity 

volatilities is done in Carpantier and Dufays (2012). 
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In this paper we generalize the asymmetric Spline-GARCH models by combining the 

Spline-GARCH model and a more general threshold GARCH model introduced in Goldman 

(2012). The widely used asymmetric GJR-GARCH (TARCH) model has a problem that the 

unconstrained estimated coefficient of  often has a negative value for equity indices. A typical 

solution to this problem is setting the coefficient of  to zero in the constrained Maximum 

Likelihood optimization. Following Goldman (2012) we use a generalized threshold GARCH 

(GTARCH) model where both coefficients,  and , in the GARCH model are allowed to change 

to reflect the asymmetry of volatility due to negative shocks. We show that the GTARCH model 

fits better as well as does not have a negative alpha bias for several equity indices and numerical 

examples. 

 

This paper is organized as follows. In the following section we review the Spline-GARCH 

models and introduce our new Spline-Threshold-GARCH (Spline-GTARCH) model. In section 

three, we estimate models using historical S&P500 and DJ30 data and measure value at risk VaR 

and expected shortfall ES for each model. In section four we run Monte Carlo experiments. The 

last section provides conclusion and future research. 

 

2. Spline-GARCH Volatility Models 

 

Consider time series of returns 𝑟𝑡. The Engle and Rangel (2008) Spline-GARCH model is 

given by the following GARCH variance 𝑔𝑡  and quadratic spline t: 

 

1t t t t t tr E r g z            (1) 

2

1 2 1
t 1

1

( )
(1 ) ( ) gt t t

t

t

r E r
g    


  






         (2) 

2

0 1

1

exp (( ) )
k

t i i t

i

c t t t m    



 
    

 
      (3) 

where (𝑡 − 𝑡𝑖)+ = {
(𝑡 − 𝑡𝑖)   𝑖𝑓𝑡 > 𝑡𝑖

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

zt is a standard Gaussian white noise process; 𝑚𝑡 is the set of weakly exogenous 

variables (i.e. macroeconomic variables); (t0 = 0, t1, … , t𝑘 = 𝑇) is a partition of total 

number of observations T into k equal subintervals. The vector of all jointly estimated 

parameters in the model is 𝜑 = ( 𝛼, 𝛽, 𝑐, 𝑤0, 𝑤1 … 𝑤𝑘) The parameters are estimated 
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using Maximum likelihood and the number of knots, k, is chosen by minimizing the 

Schwarz information criterion (SIC).1 

 

Since the constant term in the GARCH variance equation is normalized the long run 

(unconditional) variance is determined by the spline. Higher number of knots indicates 

more cycles in the low-frequency volatility, while parameters (𝑤0, 𝑤1 … 𝑤𝑘) represent 

the sharpness of the cycles. 

 

Since GARCH model is symmetric we need to extend it and allow for negative shocks to increase 

volatility more than positive shocks. In the literature this asymmetry is referred to the leverage 

effect and is commonly modeled using GJR-GARCH Model (Glosten et al. (1993)) also called 

threshold ARCH or TARCH model. The TARCH (1,1, 1) model is given by  

 

 𝑟𝑡 =  𝜇 + 𝜀𝑡 (4) 

 

𝑔𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛾𝐼𝑡−1𝜀𝑡−1

2 + 𝛽𝑔𝑡−1 

   

where   𝐼𝑡−1 = {
0 𝑖𝑓 𝑟𝑡−1 ≥ 𝜇
1 𝑖𝑓  𝑟𝑡−1 ≤ 𝜇

 

 

Here the leverage coefficient (γ) is applied to negative innovations increasing the effect 

of negative shocks. 

 

However, there is a problem with the threshold ARCH model above since coefficient α 

may take negative values in practice. In such case a constrained optimization results in α 

equal to zero. Goldman( 2012) suggested the following more general Threshold GARCH or 

GTARCH (1, 1, 1) model: 

 

 𝑟𝑡 =  𝜇 + 𝜀𝑡 (5) 

 

𝑔𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛾𝐼𝑡−1𝜀𝑡−1

2 + 𝛽𝑔𝑡−1 + 𝛿𝐼𝑡−1𝑔𝑡−1 

   

 

In this model both parameters 𝛾 and 𝛿 create the asymmetric response of volatility to 

negative shocks. Results below show that by allowing both ARCH and GARCH 

parameters to change with negative news results in better statistical fit and smaller SIC. 

                                                        
1 or Bayesian information criterion. We estimate the model starting with 1 knot up to maximum k=10 

knots.  
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Moreover, the Threshold-GARCH model not only captures the leverage effect but also shows 

higher persistence for negative returns compared to a simpler TARCH Model. 

 

The model introduced in this paper is the combined Spline-Threshold GARCH 

 (Spline-GTARCH) model from equations (1)-(3) and (5) given by 
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𝑤ℎ𝑒𝑟𝑒 𝐼𝑡−1 = {
0 𝑖𝑓 𝑟𝑡−1 ≥ 𝐸𝑡−2𝑟𝑡−1

1 𝑖𝑓  𝑟𝑡−1 ≤ 𝐸𝑡−2𝑟𝑡−1
 

 

 

3. Estimation of the Spline-Threshold GARCH Model 

We use Maximum Likelihood Estimation method (MLE) to estimate all the parameters 

(𝛼, 𝛽, 𝛾, 𝛿, 𝑐, 𝑤0, 𝑤1 … 𝑤𝑘) simultaneously. The restrictions on the parameters are given by 

𝛼, 𝛽, 𝛾, 𝛿, 𝑐 > 0 and 𝛼 + 𝛽 +
1

2
𝛾 +

1

2
𝛿 < 1. The assumption that ε has Gaussian distribution is 

not crucial since asymptotically a quasi- maximum likelihood approach can be used if returns are 

not Gaussian. 

 

The likelihood function is the product of: 
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3.1.  Monte Carlo Experiments 

We run Monte Carlo simulation of the Spline-GTARCH model with 5000 observations 

generated with true parameters2 given in the second column of Table 1. Figure 1 shows 

the results of fitting the Spline-GTARCH model for the high and low frequency 

volatilities. Table 1 shows the results of the estimated Spline-GTARCH, Spline-TARCH 

and Spline-GARCH parameters with 10 knots and most parameters are very close to true 

values. All GTARCH parameters are statistically significant, but not all the knots are 

significant. The best fitting among the three models is the Spline-GTARCH since it has 

the smallest Swartz information criterion. We also note that parameter δ is significant and 

shows higher GARCH persistence for negative returns compared to other two models.  

 

The stationarity condition for the Spline-GTARCH model is given by: α+β+0.5γ+0.5δ <1. 

This condition generally holds for each model if we plug in zero values for parameters 

that are not in a model. From Table 1 we can see that all three models are stationary but 

the asymmetric Spline-GTARCH and Spline-TARCH models have higher overall 

persistence than the base Spline-GARCH model. The Monte Carlo simulations were also 

replicated 200 times and results were similar.3 

 

 

 

Figure 1. Simulation of S-GTARCH model 

                                                        
2 The true parameters are the same as the results of estimation of the Spline-GTARCH model for DJI 

returns presented in the next section. 

3 Results are available from the authors on request. 
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Table 1. Numerical Example: Spline-GTARCH, Spline-TARCH and Spline-GARCH 

Simulated SPLINE-GTARCH 

Nobs=5000, 9 knots 

  SPLINE-GTARCH SPLINE-TARCH SPLINE-GARCH 

 True 

parameters 

coeff stde coeff stde coeff 

 

stde 

α 0.0222 0.0095 0.0084 0.0005 0.0076 0.0727 0.0076 

β 0.8785 0.8868 0.0152 0.9175 0.0100 0.8878 0.0121 

γ 0.0778 0.0826 0.0132 0.1042 0.0109   

δ 0.0715 0.0616 0.0197     

c 0.8336 0.8557 0.0796 0.7863 0.1053 0.6352 0.1030 

w0 8.0584 59.7707 68.5185 158.6159 127.1882 349.3839 124.6291 

w1 -0.0031 -0.0850 0.0992 -0.2218 0.1838 -0.4975 0.1757 

w2 -0.0042 0.2048 0.1496 0.3879 0.2673 0.8084 0.2526 

w3 0.0286 -0.2982 0.1130 -0.3679 0.1492 -0.6243 0.1475 

w4 -0.0387 0.2421 0.1208 0.3033 0.1270 0.5112 0.1353 

w5 0.0306 -0.0211 0.1210 -0.0955 0.1224 -0.2479 0.1406 

w6 -0.0344 -0.0259 0.1207 0.0242 0.1199 0.0693 0.1481 

w7 0.0432 -0.0825 0.1198 -0.0914 0.1089 -0.0464 0.1483 

w8 -0.0446 0.0728 0.1128 0.0505 0.1046 -0.0112 0.1486 

w9 0.0529 0.0224 0.1196 0.0656 0.1180 0.1321 0.1648 

w10  0.0596 0.1861 -0.0019 0.1803 -0.0845 0.2372 

α+β+0.5γ+0.5δ 0.9754 0.9685  0.9701  0.9605  

SIC  2.7287  2.7291  2.7453  

 

Notes: Data was simulated for Nobs=5000 using estimated coefficients of Spline-TGRACH model for DJI 

in Table3. Coefficients w0,w1,…w10 need to be multiplied E-05 to get actual values. Coefficients 

significant at 5% level are in bold.( α+β+0.5γ+0.5δ) measures persistence in the model. SIC is Swartz 

information Criterion. 

 

 

4. Estimation Results for SPX and DJI 

We use daily data for S&P 500 (SPX) and Dow Jones Industrial Average (DJI) for the 

period 1/3/1950-1/3/2013 from the Global Financial Database. There are 15,853 daily 

return observations4. The results of estimation of the three models for SPX are given in 

Table 2 and high and low frequency volatilities are given in Figures 2a-2c. 

                                                        
4 Only trading days data were used. 
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Using Swartz information criterion the selected optimal number of knots is 8 for the 

Spline-GTARCH and 9 for the Spline-TARCH and Spline-GARCH5. All the GTARCH 

parameters are significant showing higher persistence of GARCH when returns are 

negative. Most of the spline parameters are statistically significant as well in the 

Spline-GTARCH and Spline-TARCH models. According to the Swartz Criterion the 

Spline-GTARCH model is preferred to other two models. All three models have high 

persistence, but satisfy stationarity requirement. Figures 2a-2c look similar except that 

the asymmetric models result in higher volatility peaks, such as October 1987. 

 

Table 2. Estimation Results for SPX: Spline-GTARCH, Spline-TARCH and 

Spline-GARCH 

  SGTARCH STARCH SGARCH 

Parameters coeff stde coeff stde coeff stde 

α 0.0286 0.0035 0.0197 0.0027 0.0867 0.0045 

β 0.8642 0.0077 0.8995 0.0043 0.8944 0.0057 

γ 0.0913 0.0075 0.1164 0.0059   

δ 0.0815 0.0114     

c 0.7955 0.0718 0.7719 0.0776 0.8108 0.1101 

w0 63.1666 13.3737 48.6909 16.1791 28.7324 23.1006 

w1 -0.0282 0.0046 -0.0213 0.0061 -0.0135 0.0086 

w2 0.0434 0.0070 0.0210 0.0088 0.0114 0.0124 

w3 -0.0145 0.0049 0.0219 0.0060 0.0221 0.0088 

w4 0.0017 0.0037 -0.0369 0.0048 -0.0350 0.0090 

w5 -0.0157 0.0030 0.0245 0.0040 0.0264 0.0088 

w6 0.0267 0.0032 -0.0284 0.0045 -0.0336 0.0076 

w7 -0.0258 0.0034 0.0420 0.0045 0.0484 0.0065 

w8 0.0300 0.0050 -0.0455 0.0056 -0.0524 0.0083 

w9   0.0553 0.0102 0.0607 0.0142 

Opt.knots 8 9 9 

α+β+0.5γ+0.5δ 0.9792 0.9774 0.9811 

SIC 2.4210 2.4236 2.4476 

Notes: Data for SPX 1/3/1950-1/3/2013 with 15,853 observations. Coefficients w0,w1,…w10 need to be 

multiplied E-05 to get actual values. Coefficients significant at 5% level are in bold.( α+β+0.5γ+0.5δ) 

measures persistence in the model. SIC is the Swartz information Criterion. 

 

 

                                                        
5 We set the maximum number of knots equal to 10. 
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Figure 2a. Volatility Estimation using S-GTARCH Model 

 
Figure 2b. S&P500 Estimation using S-TARCH model 

 

Figure 2c. S&P500 Estimation using S-GARCH model 
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The results of estimation of the three models for DJI are given in Table 3 and high and 

low frequency volatilities are given in Figures 3a-3c. The results are similar to the SPX. 

The preferred model is again Spline-GTARCH which exhibits higher persistence for the 

GARCH part when returns are negative. All three models select optimal number of knots 

equal to 9 and the results for the slow moving component are similar in Figures 3a-3c, 

while asymmetric models have higher peak for high-frequency component. 

 

Table 3. Estimation Results for DJI: Spline-GTARCH, Spline-TARCH and Spline-GARCH 

  SGTARCH STARCH SGARCH 

Parameters coeff stde coeff stde coeff stde 

α 0.0222 0.0038 0.0137 0.0031 0.0764 0.0037 

β 0.8785 0.0077 0.9101 0.0054 0.9025 0.0046 

γ 0.0778 0.0066 0.1045 0.0062   

δ 0.0715 0.0112     

c 0.8336 0.0260 0.6731 0.0632 0.7024 0.0663 

w0 8.0584 2.1637 41.9552 14.8379 31.1653 17.0666 

w1 -0.0031 0.0017 -0.0149 0.0054 -0.0109 0.0065 

w2 -0.0042 0.0034 0.0108 0.0070 0.0067 0.0097 

w3 0.0286 0.0033 0.0247 0.0035 0.0228 0.0076 

w4 -0.0387 0.0032 -0.0386 0.0036 -0.0360 0.0075 

w5 0.0306 0.0032 0.0319 0.0038 0.0333 0.0069 

w6 -0.0344 0.0032 -0.0356 0.0037 -0.0402 0.0058 

w7 0.0432 0.0036 0.0442 0.0039 0.0499 0.0057 

w8 -0.0446 0.0040 -0.0455 0.0048 -0.0513 0.0082 

w9 0.0529 0.0061 0.0549 0.0071 0.0602 0.0139 

 

Opt.knots 9 9 9 

α+β+0.5γ+0.5δ 0.9754 0.9761 0.9789 

SIC 2.4779 2.4798 2.5021 

Notes: Data for DJI 1/3/1950-1/3/2013 with 15,914 observations. Coefficients w0,w1,…w10 need to be 

multiplied E-05 to get actual values. Coefficients significant at 5% level are in bold.( α+β+0.5γ+0.5δ) 

measures persistence in the model. SIC is the Swartz information Criterion. 
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Figure 3a. D&J Estimation using S-GTARCH model 

 
Figure 3b. D&J Estimation using S-TARCH model 

 

Figure 3c. D&J Estimation using S-GARCH model 

1950 1960 1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

140

Date

V
a
ri
a
n
c
e
 L

e
v
e
l(
%

)

D&J Index (DJI) Daily High- and low-frequency Volatility

 

 

HVOL

LVOL

1950 1960 1970 1980 1990 2000 2010 2020
0

50

100

150

Date

V
a
ri
a
n
c
e
 L

e
v
e
l(
%

)

D&J Index (DJI) Daily High- and low-frequency Volatility

 

 

HVOL

LVOL

1950 1960 1970 1980 1990 2000 2010 2020
0

20

40

60

80

100

120

Date

V
a
ri
a
n
c
e
 L

e
v
e
l(
%

)

D&J Index (DJI) Daily High- and low-frequency Volatility

 

 

HVOL

LVOL



12 
 

4.1 Tail Risk 

 

We start with the comparison of the multi-step-ahead volatility forecasts for three spline 

models. The forecast is made at the end of the sample which happens to be a period of 

relatively low volatility. The 1-day and 10-day volatility forecasts are given in the 

following Table. 

 

 SGARCH STARCH SGTARCH 

1 Day forecast 18.249% 14.792% 15.751% 

10 Day forecast 18.808% 16.013% 16.855% 

 

Volatility forecasts in all models are increasing but since it is a period of low volatility 

the numbers are smaller for Spline-TARCH and Spline-GTARCH. The Spline-GARCH 

model averages out TGARCH coefficients and therefore gives higher volatility values in 

a low-volatility regime.  

 

Let us now compare the values of Value at Risk (VaR) and expected shortfall (ES) for the three 

models. For simplicity we use the assumption of Normal distribution for returns. This assumption 

can be easily relaxed and either t-distribution or bootstrap could be used.6 The results for SPX 

data for various quantiles for VaR and ES are given in Tables 4 and 5 correspondingly. 

 

Table 4. VaR for various quantiles of SPX 

VaR SGARCH STARCH SGTARCH 

     1-Day, p=90% -1.474% -1.195% -1.272% 

     1-Day, p=95% -1.891% -1.533% -1.632% 

     1-Day, p=99% -2.674% -2.167% -2.308% 

     10-Day, p=90% -1.519% -1.293% -1.361% 

     10-Day, p=95% -1.949% -1.659% -1.747% 

     10-Day, p=99% -2.756% -2.346% -2.470% 

 

VaR is the (1-p) quantile of the distribution of returns, where p is the upper tail 

probability. In an extreme outcome, the actual loss (L) can be larger than VaR. In this 

case the actual expected loss in the tail is given by the expected shortfall ES: 

1 1( | )p pES E L L VaR      

                                                        
6 Although the results for VaR and ES will change with different distributional assumptions the 

ranking of the models will not change. 
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In case of the standard normal distribution,  

1

1

( )p

p t

f VaR
ES

p




       

where σt is the volatility and f(x) is the standard normal density function.  

 

Table 5. Expected Shortfall for various quantiles of SPX 

ES SGARCH STARCH SGTARCH 

     1-Day, p=90% -2.018% -1.635% -1.741% 

     1-Day, p=95% -2.372% -1.922% -2.047% 

     1-Day, p=99% -3.064% -2.483% -2.644% 

     10-Day, p=90% -2.079% -1.770% -1.863% 

     10-Day, p=95% -2.444% -2.081% -2.190% 

     10-Day, p=99% -3.158% -2.688% -2.830% 

 

From Tables 4 and 5 we see that in the period of relatively low volatility Spline-GARCH 

model gives the highest values for tail risk, either VaR or ES. Surprisingly the 

Spline-TARCH model gives the lowest tail risk and the Spline-GTARCH models gives 

average results. As we noted from Figures 2 and 3 the Spline-TARCH model gives the 

highest volatility results when volatility is very high. The Spline-GTARCH model seems 

to be smoother and even though it accounts for asymmetry in the model it does not 

produce as extreme results as Spline-TARCH. Overall based on better fit and parameter 

significance we recommend using our model for forecasting volatility and measurement 

of tail risks as it is more general and robust than other two models. The computation of 

the likelihood function is straightforward and does not require more difficult estimation 

methods.  

  

5. Conclusion 

We introduced an asymmetric Spline-Threshold-GARCH model that generalizes the 

Spline-GARCH and asymmetric TARCH models. Monte Carlo experiments of this model and 

applications for SPX and DJI equity indices show that our model has better fit and has higher 

persistence for the GARCH parameters when the returns are negative. We suggest to use our 

model for forecasting volatility and tail risk measures as it is more general and robust than 

Spline-GARCH or Spline-TARCH models. 

 

Our model can be extended for non-normal error distributions. Further research could be done on 

the economic determinants of low-frequency volatilities for the Spline-GTARCH model. 
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